

Intercomparison of Absorption Photometers Project No.: AP-2016-2-2

Basic Information:

Location of the quality assurance: TROPOS, lab 121

Date: 26/09 to 30/09/2016

Principal Investigator	Home Institution	Participant	Instrument
Andras Hoffer	University of	-	CLAP,
	Pannonia		SN 10.024

1. Intercomparison summary

Flow calibration: The flow of the instrument was found to be 1.5% higher compared to a reference flow meter (Gilibrator, Sensydyne, USA). Correction of the flow error was included in the data evaluation.

Noise and zero: The instrument passed the noise and zero tests. The noise (1σ) for 1 minute averages was 0.094, 0.094 and 0.134 Mm⁻¹ at wavelengths 467, 528, and 652 nm, respectively. The zero values, measured with filtered air for three hours were 0.028, 0.009 and 0.022 Mm⁻¹ at wavelengths 467, 528, and 652 nm, respectively. The instrument has no leakage.

Sample spot: The edges of the spots are sharp. Spot agree with sizes specified in the configuration file.

Inspection: A visible inspection showed that the instrument was maintained well. The instrument showed no damages and the chamber was clean.

Comparison to reference absorption: Because of low ambient concentrations, the absorption coefficients from the reference systems (EMS=Extinction minus Scattering) couldn't be used. Instead the absorption coefficient was derived from MAAP (SN504). This MAAP is frequently compared against EMS. MAAP and EMS agree within ±10% at wavelength 637 nm. CLAP 10.024 was compared against MAAP. CLAP data were corrected according to Ogren (2010). Wavelengths differences were accounted for using the absorption Ångström exponent from CLAP. The *red* channel of CLAP at 652 nm compares to MAAP within 5.0 ± 10 % (c.f. Figure 1). The uncertainty of 10% reflects the uncertainty of the truncation correction. A direct comparison for the 467 and 528 nm channels to a reference instruments was not possible. Instead, an Aethalometer (AE33, SN167) acts as reference instrument for the relative spectral run. The Ångström exponents from CALP for wavelength pairs 467 nm/652 nm and 528 nm/652 were higher than the Ångström exponents from Aethalometer calculated from 470 to 860 nm by 13% and 14%, respectively.

Recommendations: None

Overall assessment: The instrument meets the requirements.

2. Tables and Figures

Flow check										
1 A flow correction factor larger 1.0 means that the instrument flow is too high.										
Date	System Flow			Reference flow			Flow correction factorFehler! Textmarke nicht			
				Reference flow meter:						
				Gilibrator 'TROPOS-T'		definiert.				
	Mass	Volume		Volume	Ambient T					
	flow	reference		flow	and P					
	Q_{CLAP}	$T_{0,CLAP}$	$P_{0,CLAP}$	Q	T	P	F_{flow}			
	[slpm]	[°C]	[hPa]	[lpm]	[°C]	[hPa]				
28. Sep	0.93	0	1013	1.01	23	995	1.015			

Comparison of CLAP to MAAP

CLAP was corrected according to Ogren (2010).

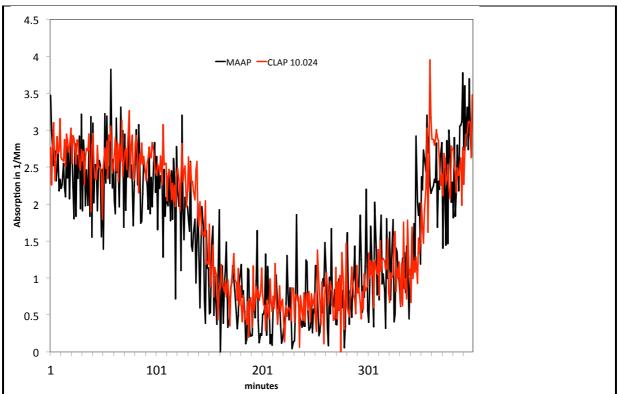


Figure 1: CLAP compared to MAAP at 637 nm. CLAP data at 652 nm were adjusted to 637 nm using the Ångström exponent from CALP between 652 and 528 nm.

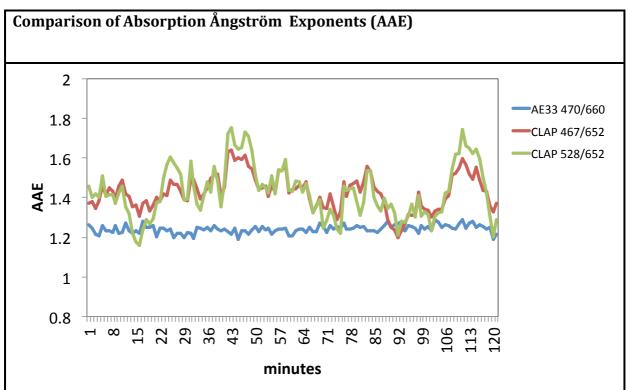


Figure 2: Absorption Ångström exponents from the AE33 at wavelength pairs 470nm/660 nm, and from CALP at wavelength pairs at 467 nm/652 nm and 528 nm/652 nm.