

Intercomparison of Absorption Photometers Project No.: AP-2016-2-3

Location of the quality assurance: TROPOS, lab 121

Date: 26 July, 2017

Principal	Home Institution	Participant	Instrument	
Investigator				
Marco	Spanish National	Marina Ealo	AE33, SN AE33-	
Pandolfi	Research Council		S01-00113	
	(CSIC)			

1. Intercomparison summary

Flow calibration: The flow meter of the instrument is set to report flow for conditions of 21.11°C and 1013.25 hPa. The flow was 0.2% too high compared to reference flow meter (Gilibrator). Corrections for the flow deviation and the temperature and pressure (STP correction) were considered in the data evaluation.

Noise and instrument background. The noise level of the instrument is in the normal range. The average noise (1σ) for all seven wavelengths was less than 20 ng/m^3 for one minute averaging time. The background level was very low with values of less than 5 ng/m^3 for all wavelengths.

Inspection: Measurement cell was clean. Just a negligible amount of deposited particulates was found in the cell. The sample spots showed well defined, sharp edges.

Comparison to a reference MAAP: BC concentrations at 660 nm (BC5) of AE33-SN133 are 27% higher than BC concentrations from a reference MAAP (SN 504). Differences can be caused by different sensitivities of instrument depending on aerosol type.

Comparison to reference Aethalometer AE33 (SN 163): The AE33 (SN 113) measures higher concentrations than the reference Aethalometer of type AE33 (SN 163). At 370 nm it measures 9% higher concentration. At all other wavelengths the values are just 5% higher than from the reference instrument.

Comparison to reference absorption: An inter-comparison to the reference absorption setup (extinction minus scattering) was not possible because of very low aerosol concentration.

Recommendations: None.

Overall assessment: The instrument meets the requirements.

2. Details

Configuration parameters

Instrument serial number: S01-00113

BC Unit: ng

Sigma values: 18.47, 14.54, 13.13, 11.58, 99.89, 7.77, 7.19 Volumetric reference: ACMA, P_0 =1013.25 hPa and T_0 =21.11°C

Spot Area: 0.785 cm² Leakage factor: 0.07

Flow check

¹Correction factors F_{flow} and F_{STP} for correcting eBC concentrations. F_{flow} corrects for inlet flow errors considering leakage. F_{STP} is used to adjust concentrations to STP conditions (0°C, 1013.25 hPa).

Date	e System Flow				Reference flow			Flow	STP
				Reference flow meter:			correcti	correctio	
					Gilibrator 'TROPOS-T'			on	n
	Mass flow		Volume reference		Volume flow	Ambient <i>T</i> and <i>P</i>		hler! hler! Textmarke nicht Ke nicht	factorFe hler! Textmar ke nicht definiert
	Q _{AE33} [slpm]	leak age	33 [°C]	P _{0,AE33} [hPa]	Q [lpm]	<i>T</i> [°C]	P [hPa]	F_{flow}	F_{STP}
26. Sep	5	0.07	21.1 1	1013.2 5	4.658	20	1010	0.992	1.076

Spot size check						
Correction factor for spot sizes F_{spot} .						
Nominal spot size [cm ²]	Measured spot size [mm ²]	F_{spot}				
0.785	Well defined spot, spot size not	1.0				
	ctor for spot sizes F_{spot} . Nominal spot size [cm ²]	ctor for spot sizes F_{spot} . Nominal spot size [cm ²] Measured spot size [mm ²]				

Instrumental Noise Noise in units of eBC concentration measured with filtered air.									
Avg. time	Wave- length [nm]	Num data points	Median [ng]	10 th percentile [ng/m ³]	90 th percentile [ng/m ³]	Mean [ng/m³]	Standard deviation [ng/m³]	Error of the mean [ng/m³]	
5 min	370 450 520 590 660 880	231 231 231 231 231 231	4.2 -2.1 -1.1 -2.1 3.1 0.0	-5.2 -16 -13.6 -18.9 -11.3 -19.6	13.6 12.6 10.5 15.8 17.8 19.6	4.2 -2.2 -1.1 -1.3 3.2 0.49	7.4 17.2 9.9 13.4 11.8 15.1	0.49 1.1 0.7 0.9 0.8 1.0 1.0	
A	lvg. ime	Avg. Wave- ime length [nm] 5 min 370 450 520 590 660	Avg. Wave- Num length data [nm] points 5 min 370 231 450 231 520 231 590 231 660 231 880 231	Avg. Wave- Num data [ng] mine length data points 370	Avg. Wave- Num length data [ng] percentile [ng/m³] 5 min 370 231 4.2 -5.2 450 231 -2.1 -16 520 231 -1.1 -13.6 590 231 -2.1 -18.9 660 231 3.1 -11.3 880 231 0.0 -19.6	Avg. Wave-length [nm] Num data points Median [ng] 10th percentile [ng/m³] 90th percentile [ng/m³] 6 min 370 231 4.2 -5.2 13.6 450 231 -2.1 -16 12.6 520 231 -1.1 -13.6 10.5 590 231 -2.1 -18.9 15.8 660 231 3.1 -11.3 17.8 880 231 0.0 -19.6 19.6	Avg. ime Wave-length [nm] Num data points Median [ng] 10th percentile [ng/m³] 90th percentile [ng/m³] Mean [ng/m³] 6 min 370 231 4.2 -5.2 13.6 4.2 450 231 -2.1 -16 12.6 -2.2 520 231 -1.1 -13.6 10.5 -1.1 590 231 -2.1 -18.9 15.8 -1.3 660 231 3.1 -11.3 17.8 3.2 880 231 0.0 -19.6 19.6 0.49	Avg. ime Wave-length [nm] Num data points Median percentile [ng/m³] 10th percentile [ng/m³] 90th percentile [ng/m³] Mean deviation [ng/m³] Standard deviation [ng/m³] 6 min 370 231 4.2 -5.2 13.6 4.2 7.4 450 231 -2.1 -16 12.6 -2.2 17.2 520 231 -1.1 -13.6 10.5 -1.1 9.9 590 231 -2.1 -18.9 15.8 -1.3 13.4 660 231 3.1 -11.3 17.8 3.2 11.8 880 231 0.0 -19.6 19.6 0.49 15.1	

Figure: Comparion of eBC concentrations from of AE33 SN-113 and the reference instrument AE33 SN-163.