

Intercomparison of Absorption Photometers Project No.: AP-2016-3-1

Basic Information:

Location of the quality assurance: TROPOS, lab 121

Date: 13 September, 2017

Principal Investigator	•		Instrument	
A.	TROPOS	-	MAAP, SN 137	
Wiedensohler				

1. Instrument inter-comparison summary

Flow calibration: The flow of the instrument agreed to the flow measured with a reference flow meter (Gilibrator 'TROPOS-T'). The instrument flow was 1.5 % too high resulting in higher eBC concentrations. Correction of the flow error was included in the data evaluation.

Noise. The noise level of the instrument was meets the requirements with single standard deviation (1σ) of 43 ng/m³ for 1 minute averaging time. The average value of 42 ng/m³ indicates that the instrument is leak free.

Comparison to reference MAAP: BC concentrations are about 1.2 % lower than BC concentrations from the 'reference' MAAP.

Cell Inspection: Cell was cleaned because of little dirt.

Recommendations: None

Overall assessment: The instrument meets the requirements.

2. Details

Configuration parameters (Print format 8)

SIGMA BC: 6.6 m2/g LUFTDURCHSATZ l/h 480 MITTELWERTSPEICHER: 1 min

KONZ. BEZOGEN AUF BETRIEBSBEDINGUNGEN

NORMTEMPERATUR 0_C
DRUCKFORMAT: COM1 12
DRUCKZYCLUS: 1 min
BAUDRATE: Bd COM1 9600
BAUDRATE: Bd COM2 9600
GERAETE-ADRESSE: 0
FILTERWECHSEL

TRANSM. < % 50 ZYCLUS h 100 UHRZEIT UHR 24 SENSORKALIBRIERUNG

UNIT of BC ug/m3 (changed to ng/m3)

P1,V P1,NP P2,V P2,NP P3,NP T1,NP T2,NP T3,NP

-20 -36 -83 64 49 137 -271

LUFTDURCHSATZ 97.3 ANALOGAUSGAENGE

AUSGABENULLPUNKT: 4mA

CBC 0 10 MBC 0 2400

Data Processing

Equivalent black carbon concentrations reported by instruments were corrected for flow deviations and adjusted to standard temperature and pressure conditions ($T=0^{\circ}$ C, P=1013.25 hPa) by

$$[BC] = [BC_{instr}] \times F_{flow} \times F_{STP}$$

For details read Appendix A.

Conversion between the eBC concentrations and the absorption coefficient is done by

$$b_{abs}[1/Mm] = eBc[\mu g/cm] \times Sigma \times 1.05$$
,

with the *mass absorption cross section* MAC= $6.6 \, \text{m}^2/\text{g}$. During the RAOS (Sheridan et al. 2005) experiment the MAAP was compared to a reference absorption at the wavelength 670 nm, but the true wavelength of MAAP is 637 nm. The factor 1.05 compensates the resulting error in the absorption (Mueller et al. 2010).

Flow check

Correction factors F_{flow} and F_{STP} for correcting eBC concentrations. F_{flow} corrects inlet flow errors. F_{STP} adjusting concentrations to STP conditions (0°C, 1013.25 hPa).

Date	System Flow			Reference flow			Flow	STP	
				Reference flow meter:			correction	correction	
				Gilibrator 'TROPOS-T'			factor ^{Fehler!}	factor Fehl	
	Volum	Volume	9	Volume	Ambier	nt T	Textmarke	er!	
	etric	reference		flow	and P		nicht definiert.	Textmark	
	flow 1						e nicht		
								definiert.	
	Q_{MAAP}	$T_{O,MAAP}$	$P_{0,MAAP}$	Q	T	P	F_{flow}	F_{STP}	
	[lpm]	[°C]	[hPa]	[lpm]	[°C]	[hPa]			
Dec.2	9	NA	NA	9.14	22	1005	0.985	NA	

Instrumental Noise

Noise in units of eBC concentration measured with filtered air.

Date	Avg.	Wave-	Num	Median	10 th	90 th	Mean	Standard	Error of
	time	length	data	[ng]	percentile	percentile	[ng]	deviation	the mean
		[nm]	points		[ng]	[ng]		[ng]	[ng]
Dec. 2	1 min	637	81	31	-4	104	42	43	5

Comparison to reference MAAP

Correlation of eBC from MAAP (SN 137) and reference instrument MAAP (SN 504) at 637 nm.

	0.988
Slope	± 0.002
R ²	0.966

 $^{^{\}rm 1}$ For instrument intercomparison the MAAP was set to Standard flow with $T_0\text{=}0$ and $P_0\text{=}1013.25$ hPA.

Figure 1: Comparison of eBC concentrations from MAAP SN-137 (red stars) and MAAP SN-504 (blue line).

Appendix: Instrument corrections

Necessary corrections to all instruments are flow and spot size correction and conversion of concentrations and absorption coefficients to STP conditions. BC concentrations from individual instruments $[BC_{instr}]$ were by corrected by:

$$[BC] = [BC_{instr}] \times F_{flow} \times F_{spot} \times F_{STP}$$

a) The Flow correction factor for compensating calibration errors of the instrument flow meter and is defined by:

$$F_{flow} = \frac{Q_{instr}\left[slpm\right]}{Q_{ref}\left[lpm\right]} \times \frac{T_{ref}\left[K\right]}{T_{0,instr}\left[K\right]} \times \frac{P_{0,instr}\left[hPA\right]}{P_{ref}\left[hPa\right]}$$

where $Q_{instr.}$ and Q_{ref} are the flows measured with the instrument and determined with a reference volume flow meter, respectively. The flow of the volume flow meter is converted using the temperature T_{ref} and pressure P_{ref} , which are typically the ambient or room temperature or pressure near the reference flow meter. Also the standard temperature $T_{0,instr}$ and standard pressure $P_{0,instr}$ of the instrument have to be considered.

b) The adjustment of instrument flow to standard temperature and pressure (STP) is done by

$$F_{STP} = \frac{T_{0,instr.} + 273}{T_0 + 273} \times \frac{P_0}{P_{0,instr.}}$$

- c) whereas $T_{0,instr}$ and $P_{0,instr}$ are the standard temperature and pressure of individual instrument. For ACTRIS workshops STP is defined to be T_0 =0°C and P_0 =1013.25 hPa.
- d) The spot size correction factor F_{spot} compensates for systematic deviations of sample spot sizes and is defined by

$$F_{spot} = \frac{A_{meas}}{A_{instr}}$$

where $A_{instr.}$ and A_{meas} are the instrument nominal and the measured spot area, respectively.

References

Sheridan, P. J., et al. (2005). "The Reno Aerosol Optics Study: An evaluation of aerosol absorption measurement methods." <u>Aerosol Science and Technology</u> **39**(1): 1-16.

Müller, T., et al. (2011). "Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops." <u>Atmospheric Measurement Techniques</u> **4**(2): 245-268.